সরলরেখা (Straight Line) হল এমন একটি রেখা যা দুই প্রান্তের মধ্যে সবচেয়ে সংক্ষিপ্ত দূরত্ব তৈরি করে এবং যেটি সমতলে একটি নির্দিষ্ট দিক ধরে চলে। সরলরেখার প্রতিটি অংশ একই সমতলে অবস্থিত থাকে এবং এর প্রতিটি বিন্দুতে একই ঢাল থাকে। সরলরেখাকে এমন একটি রেখা হিসেবে চিহ্নিত করা যায়, যা একটানা এবং সোজা পথে বিস্তৃত থাকে।
3x – 4y - 12 = 0 সরলরেখাটি x ও y অক্ষকে যথাক্রমে A ও B বিন্দুতে ছেদ করে,
বিন্দু হতে সরলরেখার উপর অঙ্কিত লম্বের দৈর্ঘ্য P এবং লম্ব রেখাটি x-অক্ষের সাথে কোণ উৎপন্ন করলে-
x + y + 4 = 0 এবং x - y - 2 = 0 দুইটি সরলরেখার সমীকরণ।
কার্তেসীয় এবং পোলার স্থানাঙ্ক ব্যবস্থার মধ্যে সম্পর্ক হলো বিভিন্ন স্থানাঙ্ক সিস্টেমের মধ্যে অবস্থান নির্দেশ করার একটি উপায়। এই দুই স্থানাঙ্ক ব্যবস্থার মধ্যে সম্পর্ক বোঝার জন্য নিচে বিস্তারিত আলোচনা করা হলো:
কার্তেসীয় স্থানাঙ্কে (Cartesian Coordinates) একটি বিন্দুর অবস্থানকে \( (x, y) \) আকারে প্রকাশ করা হয়, যেখানে:
পোলার স্থানাঙ্কে (Polar Coordinates) একটি বিন্দুর অবস্থানকে \( (r, \theta) \) আকারে প্রকাশ করা হয়, যেখানে:
কার্তেসীয় স্থানাঙ্ক \( (x, y) \) থেকে পোলার স্থানাঙ্ক \( (r, \theta) \) এ রূপান্তর করার জন্য নিচের সূত্রগুলো ব্যবহার করা হয়:
\[
r = \sqrt{x^2 + y^2}
\]
\[
\theta = \tan^{-1} \left( \frac{y}{x} \right)
\]
এখানে \( r \) হল ব্যাসার্ধ এবং \( \theta \) হল কোণ।
পোলার স্থানাঙ্ক \( (r, \theta) \) থেকে কার্তেসীয় স্থানাঙ্ক \( (x, y) \) এ রূপান্তর করার জন্য নিচের সূত্রগুলো ব্যবহার করা হয়:
\[
x = r \cos \theta
\]
\[
y = r \sin \theta
\]
এখানে \( r \) হল মূলবিন্দু থেকে বিন্দুর দূরত্ব এবং \( \theta \) হল কোণ।
যদি একটি বিন্দুর কার্তেসীয় স্থানাঙ্ক \( (3, 4) \) হয়, তাহলে আমরা পোলার স্থানাঙ্কে এটি বের করতে পারি:
অতএব, পোলার স্থানাঙ্ক \( (5, 53.13^\circ) \) বা \( (5, 0.93) \)।
এইভাবে কার্তেসীয় এবং পোলার স্থানাঙ্ক ব্যবস্থার মধ্যে রূপান্তর করতে এই সূত্রগুলো ব্যবহার করা হয়।
দুইটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়ের জন্য একটি গুরুত্বপূর্ণ সূত্র রয়েছে। যদি দুটি বিন্দু \( A(x_1, y_1) \) এবং \( B(x_2, y_2) \) হয়, তবে \( A \) এবং \( B \) বিন্দু দুটির মধ্যকার দূরত্ব \( d \) নির্ণয় করতে নিচের সূত্রটি ব্যবহার করা হয়:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
ধরুন, \( A \) বিন্দুর স্থানাঙ্ক \( (2, 3) \) এবং \( B \) বিন্দুর স্থানাঙ্ক \( (5, 7) \)। তাহলে,
এখন, \( d \) নির্ণয় করা যাক:
\[
d = \sqrt{(5 - 2)^2 + (7 - 3)^2}
\]
\[
= \sqrt{3^2 + 4^2}
\]
\[
= \sqrt{9 + 16}
\]
\[
= \sqrt{25}
\]
\[
= 5
\]
অতএব, \( A \) এবং \( B \) বিন্দু দুটির মধ্যকার দূরত্ব হলো \( 5 \) একক।
এই সূত্রটি দুইটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়ের জন্য জ্যামিতিতে বহুল ব্যবহৃত।
-10
-40
2
-2
কোনো রেখাংশকে নির্দিষ্ট অনুপাতে বিভক্তকারী বিন্দুর স্থানাঙ্ক নির্ণয়ের জন্য একটি বিশেষ সূত্র ব্যবহার করা হয়। যদি দুটি বিন্দু \( A(x_1, y_1) \) এবং \( B(x_2, y_2) \) হয় এবং \( A \) এবং \( B \)-এর মধ্যে রেখাংশকে \( m : n \) অনুপাতে বিভক্তকারী বিন্দুটি \( P(x, y) \) হয়, তবে \( P \)-এর স্থানাঙ্ক নির্ণয়ের সূত্র হলো:
\[
x = \frac{mx_2 + nx_1}{m + n}
\]
\[
y = \frac{my_2 + ny_1}{m + n}
\]
এখানে,
ধরুন, \( A \) বিন্দুর স্থানাঙ্ক \( (2, 3) \) এবং \( B \) বিন্দুর স্থানাঙ্ক \( (8, 7) \), এবং \( A \) এবং \( B \)-এর মধ্যকার রেখাংশকে \( 2 : 3 \) অনুপাতে বিভক্তকারী বিন্দু \( P \)-এর স্থানাঙ্ক নির্ণয় করতে চাই।
এক্ষেত্রে,
এখন, \( P(x, y) \)-এর স্থানাঙ্ক নির্ণয় করা যাক:
\[
x = \frac{(2 \times 8) + (3 \times 2)}{2 + 3} = \frac{16 + 6}{5} = \frac{22}{5} = 4.4
\]
\[
y = \frac{(2 \times 7) + (3 \times 3)}{2 + 3} = \frac{14 + 9}{5} = \frac{23}{5} = 4.6
\]
অতএব, \( P \) বিন্দুর স্থানাঙ্ক \( (4.4, 4.6) \)।
এইভাবে, কোনো রেখাংশকে নির্দিষ্ট অনুপাতে বিভক্তকারী বিন্দুর স্থানাঙ্ক নির্ণয় করা যায়।
ত্রিভুজের ক্ষেত্রফল নির্ণয়ের জন্য বেশ কয়েকটি পদ্ধতি রয়েছে। সাধারণ কিছু পদ্ধতি নিচে আলোচনা করা হলো:
যদি ত্রিভুজের একটি ভিত্তি (Base) \( b \) এবং উচ্চতা (Height) \( h \) জানা থাকে, তবে ত্রিভুজের ক্ষেত্রফল \( A \) নির্ণয় করা যায় নিচের সূত্র দিয়ে:
\[
A = \frac{1}{2} \times b \times h
\]
যদি ত্রিভুজের তিনটি শীর্ষবিন্দুর স্থানাঙ্ক \( A(x_1, y_1) \), \( B(x_2, y_2) \), এবং \( C(x_3, y_3) \) জানা থাকে, তবে ত্রিভুজের ক্ষেত্রফল \( A \) নির্ণয় করা যায় নিচের সূত্র দিয়ে:
\[
A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
\]
যদি ত্রিভুজের তিন বাহুর দৈর্ঘ্য \( a \), \( b \), এবং \( c \) জানা থাকে, তবে ত্রিভুজের ক্ষেত্রফল \( A \) নির্ণয় করতে হারনের সূত্র ব্যবহার করা হয়। প্রথমে, ত্রিভুজের পরিধির অর্ধেক \( s \) বের করতে হবে:
\[
s = \frac{a + b + c}{2}
\]
এরপর, ক্ষেত্রফল \( A \) নির্ণয় করতে নিচের সূত্র ব্যবহার করা হয়:
\[
A = \sqrt{s(s - a)(s - b)(s - c)}
\]
ধরুন, একটি ত্রিভুজের তিনটি শীর্ষবিন্দুর স্থানাঙ্ক \( A(1, 2) \), \( B(4, 6) \), এবং \( C(7, 2) \)।
\[
A = \frac{1}{2} \left| 1(6 - 2) + 4(2 - 2) + 7(2 - 6) \right|
\]
\[
= \frac{1}{2} \left| 1 \times 4 + 4 \times 0 + 7 \times -4 \right|
\]
\[
= \frac{1}{2} \left| 4 - 28 \right|
\]
\[
= \frac{1}{2} \times 24 = 12
\]
অতএব, ত্রিভুজের ক্ষেত্রফল \( 12 \) বর্গ একক।
এই পদ্ধতিগুলি ব্যবহার করে বিভিন্ন ধরনের ত্রিভুজের ক্ষেত্রফল নির্ণয় করা যায়।
সরলরেখার সঞ্চারপথের সমীকরণ বলতে এমন একটি সমীকরণকে বোঝায় যা সরলরেখার সমীকরণ নির্ধারণ করে। সরলরেখা সোজাসুজি একটি নির্দিষ্ট পথ ধরে চলে বলে এর সঞ্চারপথের সমীকরণও সরলরেখার সমীকরণ হিসেবেই বিবেচিত হয়। কোনো সরলরেখার সঞ্চারপথ নির্ণয়ের জন্য সাধারণত দুইটি বিন্দুর অবস্থানের ভিত্তিতে সমীকরণ নির্ণয় করা হয়।
যদি একটি সরলরেখার উপর দুটি বিন্দু \( A(x_1, y_1) \) এবং \( B(x_2, y_2) \) থাকে, তবে সরলরেখার সমীকরণ হবে:
প্রথমে, সরলরেখার ঢাল নির্ণয় করতে হবে। ঢাল বা সোপান (slope) \( m \) নির্ণয় করা যায় নিচের সূত্র দিয়ে:
\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]
যদি ঢাল \( m \) এবং একটি নির্দিষ্ট বিন্দু \( (x_1, y_1) \) জানা থাকে, তবে সরলরেখার সমীকরণ নির্ণয় করা যায়:
\[
y - y_1 = m(x - x_1)
\]
উপরের সমীকরণটি সরলীকরণ করলে আমরা সরলরেখার সাধারণ রূপ পেতে পারি:
\[
y = mx + c
\]
এখানে \( m \) হল ঢাল এবং \( c \) হল \( y \)-অক্ষের উপর রেখাটি যেখানে ছেদ করে।
ধরুন, \( A(2, 3) \) এবং \( B(5, 7) \) বিন্দু দুটি একটি সরলরেখার উপর অবস্থিত।
\[
m = \frac{7 - 3}{5 - 2} = \frac{4}{3}
\]
\[
y - 3 = \frac{4}{3}(x - 2)
\]
\[
y - 3 = \frac{4}{3}x - \frac{8}{3}
\]
\[
y = \frac{4}{3}x - \frac{8}{3} + 3
\]
\[
y = \frac{4}{3}x + \frac{1}{3}
\]
অতএব, সরলরেখার সমীকরণ হলো:
\[
y = \frac{4}{3}x + \frac{1}{3}
\]
এই সমীকরণটি সরলরেখার সঞ্চারপথ নির্দেশ করে, যা একটি সরলরেখা ধরে বিস্তৃত থাকে।
সরলরেখার ঢাল বা সোপান (Slope) হলো এমন একটি গুণাবলী যা নির্দেশ করে যে সরলরেখাটি কীভাবে ঢালু বা কাত হয়ে রয়েছে। এটি রেখার প্রবণতা নির্দেশ করে এবং গণিতে এটি
দ্বারা চিহ্নিত করা হয়। ঢাল মূলত রেখাটি কতটা তীক্ষ্ণভাবে উপরে বা নিচে চলছে, তা নির্দেশ করে।সরলরেখার ঢাল নির্ণয়ের জন্য সাধারণত দুটি বিন্দু ব্যবহার করা হয়। যদি রেখার উপর দুটি বিন্দু
এবং থাকে, তাহলে ঢাল নির্ণয় করার সূত্রটি হলো:এটি বলতে পারেন যে, ঢাল হচ্ছে -এর পরিবর্তনের হার এবং -এর পরিবর্তনের হারের অনুপাত।
সরলরেখার বিভিন্ন আকারের সমীকরণ রয়েছে, যা রেখার অবস্থান ও গঠন নির্ভর করে। নিচে সরলরেখার বিভিন্ন ধরনের সমীকরণ এবং তাদের বৈশিষ্ট্য সম্পর্কে আলোচনা করা হলো:
সরলরেখার এই আকারের সমীকরণটি হলো:
\[
y = mx + c
\]
এখানে:
উদাহরণস্বরূপ, যদি একটি সরলরেখার ঢাল \( m = 2 \) এবং \( y \)-অক্ষে ছেদ বিন্দু \( c = 3 \) হয়, তবে সমীকরণ হবে:
\[
y = 2x + 3
\]
যদি কোনো নির্দিষ্ট বিন্দু \( (x_1, y_1) \) এবং রেখার ঢাল \( m \) জানা থাকে, তবে সরলরেখার সমীকরণ হবে:
\[
y - y_1 = m(x - x_1)
\]
এটি সাধারণত তখন ব্যবহৃত হয়, যখন একটি নির্দিষ্ট বিন্দু এবং রেখার ঢাল দেওয়া থাকে।
উদাহরণস্বরূপ, যদি একটি বিন্দু \( (2, 3) \) এবং রেখার ঢাল \( m = -1 \) হয়, তবে সমীকরণ হবে:
\[
y - 3 = -1(x - 2)
\]
সরলরেখার সাধারণ সমীকরণ হলো:
\[
Ax + By + C = 0
\]
এখানে \( A \), \( B \), এবং \( C \) ধ্রুবক এবং \( A \) এবং \( B \) একসাথে শূন্য নয়।
উদাহরণস্বরূপ, যদি সমীকরণ হয় \( 3x + 4y - 12 = 0 \), তবে এটি একটি সাধারণ আকারের সমীকরণ।
যদি একটি সরলরেখা \( x \)-অক্ষকে \( a \) বিন্দুতে এবং \( y \)-অক্ষকে \( b \) বিন্দুতে ছেদ করে, তবে সমীকরণ হবে:
\[
\frac{x}{a} + \frac{y}{b} = 1
\]
উদাহরণস্বরূপ, যদি রেখাটি \( x \)-অক্ষকে \( 3 \) এবং \( y \)-অক্ষকে \( 4 \) এ ছেদ করে, তবে সমীকরণ হবে:
\[
\frac{x}{3} + \frac{y}{4} = 1
\]
যদি একটি রেখা \( y \)-অক্ষে অনুভূমিক থাকে, অর্থাৎ কোনো নির্দিষ্ট \( y \)-মানের সমান হয়, তবে সমীকরণ হবে:
\[
y = c
\]
এখানে \( c \) হলো \( y \)-এর মান।
উদাহরণস্বরূপ, \( y = 5 \) একটি অনুভূমিক রেখার সমীকরণ।
যদি একটি রেখা \( x \)-অক্ষে উল্লম্ব থাকে, অর্থাৎ কোনো নির্দিষ্ট \( x \)-মানের সমান হয়, তবে সমীকরণ হবে:
\[
x = c
\]
এখানে \( c \) হলো \( x \)-এর মান।
উদাহরণস্বরূপ, \( x = -3 \) একটি উল্লম্ব রেখার সমীকরণ।
এই আকারগুলির মধ্যে বিভিন্ন পরিস্থিতিতে নির্দিষ্ট আকার ব্যবহার করা হয়, যেমন ঢাল ও ছেদ বিন্দু জানলে ঢাল-অবস্থান আকার ব্যবহার করা হয়, এবং নির্দিষ্ট বিন্দু ও ঢাল জানা থাকলে বিন্দু-ঢাল আকারের সমীকরণ ব্যবহার করা হয়।
দুইটি সরলরেখা কখন পরস্পর সমান্তরাল বা লম্ব হবে, তা নির্ধারণ করার জন্য তাদের ঢালের গুণাবলী বিশ্লেষণ করা হয়। নিচে এই শর্তগুলি বিস্তারিতভাবে আলোচনা করা হলো:
দুটি সরলরেখা পরস্পর সমান্তরাল হবে যদি তাদের ঢাল সমান হয়।
যদি সরলরেখা \( L_1 \) এবং \( L_2 \)-এর ঢাল যথাক্রমে \( m_1 \) এবং \( m_2 \) হয়, তাহলে রেখাদুটি সমান্তরাল হবে যদি:
\[
m_1 = m_2
\]
উদাহরণ:
ধরুন, সরলরেখা \( L_1 \) এবং \( L_2 \)-এর সমীকরণ যথাক্রমে \( y = 2x + 3 \) এবং \( y = 2x - 5 \)। এখানে, উভয় রেখার ঢাল \( m = 2 \)। সুতরাং, \( L_1 \) এবং \( L_2 \) রেখাদুটি পরস্পর সমান্তরাল।
দুটি সরলরেখা পরস্পর লম্ব হবে যদি তাদের ঢালের গুণফল \( -1 \) হয়।
যদি সরলরেখা \( L_1 \) এবং \( L_2 \)-এর ঢাল যথাক্রমে \( m_1 \) এবং \( m_2 \) হয়, তাহলে রেখাদুটি পরস্পর লম্ব হবে যদি:
\[
m_1 \times m_2 = -1
\]
অথবা, \( m_2 = -\frac{1}{m_1} \)।
উদাহরণ:
ধরুন, একটি সরলরেখার সমীকরণ \( y = 3x + 2 \), যার ঢাল \( m_1 = 3 \)। যদি আরেকটি সরলরেখা \( y = -\frac{1}{3}x + 4 \) হয়, তাহলে এর ঢাল \( m_2 = -\frac{1}{3} \)। এখানে,
\[
m_1 \times m_2 = 3 \times -\frac{1}{3} = -1
\]
অতএব, এই দুটি রেখা পরস্পর লম্ব।
এই শর্তগুলির মাধ্যমে দুইটি রেখার সম্পর্ক নির্ণয় করা যায়।
কোনো নির্দিষ্ট বিন্দু থেকে একটি সরলরেখার লম্ব দূরত্ব নির্ণয় করার জন্য একটি নির্দিষ্ট সূত্র ব্যবহার করা হয়। যদি কোনো বিন্দু \( P(x_1, y_1) \) এবং একটি সরলরেখা \( Ax + By + C = 0 \) দেওয়া থাকে, তবে বিন্দু \( P \) থেকে রেখাটির উপর লম্ব দূরত্ব \( d \) নির্ণয় করার জন্য নিচের সূত্রটি ব্যবহার করা হয়:
\[
d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}
\]
এখানে:
ধরুন, সরলরেখাটির সমীকরণ হলো \( 3x + 4y - 10 = 0 \) এবং বিন্দুটি হলো \( (2, 3) \)।
\[
d = \frac{|3 \times 2 + 4 \times 3 - 10|}{\sqrt{3^2 + 4^2}}
\]
\[
= \frac{|6 + 12 - 10|}{\sqrt{9 + 16}}
\]
\[
= \frac{|8|}{\sqrt{25}}
\]
\[
= \frac{8}{5} = 1.6
\]
অতএব, বিন্দু \( (2, 3) \) থেকে সরলরেখা \( 3x + 4y - 10 = 0 \)-এর উপর লম্ব দূরত্ব \( 1.6 \) একক।
এই চিত্রের মাধ্যমে সহজেই বোঝা যায় যে, \( P(x_1, y_1) \) বিন্দু থেকে সরলরেখা \( Ax + By + C = 0 \)-এর উপর লম্ব দূরত্ব কীভাবে নির্ণয় করা হয়।
আমি এই চিত্রটি সরাসরি প্রদান করতে পারছি না, তবে আপনি একটি কাগজ বা জ্যামিতিক সফটওয়্যারে এই ধাপগুলো অনুসরণ করে চিত্রটি আঁকতে পারেন:
দুটি সরলরেখার ছেদবিন্দু (Intersection Point) নির্ণয় করার জন্য সরলরেখাগুলির সমীকরণগুলো একসাথে সমাধান করতে হয়। যদি দুটি সরলরেখার সমীকরণ দেওয়া থাকে:
তাহলে এই সমীকরণগুলির সমাধান করার মাধ্যমে তাদের ছেদবিন্দু \( (x, y) \) পাওয়া যায়।
দুটি সমীকরণ একসাথে সমাধান করতে আমরা বিভিন্ন পদ্ধতি ব্যবহার করতে পারি। নিচে এলিমিনেশন পদ্ধতিতে সমাধান প্রদর্শন করা হলো:
প্রথমে একটি চলক বাদ দিয়ে অন্য চলকের সমাধান করতে হবে। এজন্য দুই সমীকরণকে এমনভাবে সাজানো হয় যেন একটি চলক বাদ যায়।
ধরুন, আমাদের দুটি সমীকরণ আছে:
প্রথমে, দ্বিতীয় সমীকরণ থেকে \( x \)-এর মান বের করি:
\[
x = 2y - 1
\]
প্রথম সমীকরণটি হলো:
\[
2(2y - 1) + 3y - 5 = 0
\]
এখন সমাধান করা যাক:
\[
4y - 2 + 3y - 5 = 0
\]
\[
7y - 7 = 0
\]
\[
y = 1
\]
\( y = 1 \) মানটি দ্বিতীয় সমীকরণে স্থাপন করি:
\[
x = 2(1) - 1 = 1
\]
অতএব, রেখাদুটি \( (1, 1) \) বিন্দুতে ছেদ করেছে।
দুটি সরলরেখার ছেদবিন্দু নির্ণয়ের জন্য নিম্নোক্ত সূত্র ব্যবহার করা যায়, যদি রেখাদুটি সমান্তরাল না হয়:
\[
x = \frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}
\]
\[
y = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}
\]
এই সূত্রগুলো ব্যবহার করে যে কোনো দুই সরলরেখার ছেদবিন্দু সহজেই নির্ণয় করা সম্ভব।
দুইটি সরলরেখার অন্তর্ভুক্ত কোণ নির্ণয়ের জন্য তাদের ঢাল ব্যবহার করা হয়। যদি দুটি সরলরেখার ঢাল \( m_1 \) এবং \( m_2 \) হয়, তবে তাদের অন্তর্ভুক্ত কোণ \( \theta \) নির্ণয়ের জন্য নিচের সূত্রটি ব্যবহার করা হয়:
\[
\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right|
\]
এখানে:
ধরুন, দুটি সরলরেখার ঢাল \( m_1 = 2 \) এবং \( m_2 = -\frac{1}{3} \)।
\[
\tan \theta = \left| \frac{2 - \left(-\frac{1}{3}\right)}{1 + 2 \cdot \left(-\frac{1}{3}\right)} \right|
\]
\[
= \left| \frac{2 + \frac{1}{3}}{1 - \frac{2}{3}} \right|
\]
\[
= \left| \frac{\frac{6 + 1}{3}}{\frac{3 - 2}{3}} \right|
\]
\[
= \left| \frac{\frac{7}{3}}{\frac{1}{3}} \right|
\]
\[
= |7| = 7
\]
এখন, \( \tan \theta = 7 \) হলে, \( \theta = \tan^{-1}(7) \), যা প্রায় \( 81.87^\circ \)।
এইভাবে, দুইটি সরলরেখার ঢালের সাহায্যে তাদের অন্তর্ভুক্ত কোণ নির্ণয় করা যায়।